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1 SIR EPIDEMIC MODEL 

 This model assumes that each member of a population is either susceptible to the disease (S), 

infected with the disease (I), or recovered from the disease with long-term immunity. If the 

disease is short-lived compared to the population, we can ignore vital dynamics (that is births 

and natural deaths).   

 In the case of airborne diseases or when infection occurs by respiratory secretion on hands, 

the rate of infections is modeled by a mass action term  where  is the disease transmission 

constant. If the mean infectious (or recovery) time is denoted by  (it is about 14 days for 

covid-19), the recovery rate can be modeled by .  Let also  be the fraction of infected 

people who recover from the disease. With these assumptions, the disease dynamics can be 

simply described by the following system of ODEs: 

   (1) 

   (2) 

   (3) 

 The initial conditions are: 

    (4) 

where  

 By introducing the dimensionless variables 

   

equations (1) to (4) become: 

   (5) 

   (6) 

βSI β

1 γ

γ I f

dS
dt

= −βSI

dI
dt

= βSI − γ I

dR
dt

= f γ I

S 0( ) = S0 , I 0( ) = I0 , R 0( ) = 0
I0 ≪ S0

S = S
S0

,    I = I
S0

,    R = R
S0

,    τ = γ t

dS
dτ

= −
βS0
γ
S ⋅ I

dI
dτ

=
βS0
γ
S ⋅ I − I



 2 

   (7) 

with initial conditions: 

   (8) 

 In the early stages of the epidemic and if the initial fraction of infected people is very small 

, the number of susceptible people will remain almost constant. That is  or 

 for very small times. Then equation (6) becomes  

   (9) 

whose solution is: 

   (10) 

and in dimensional variables 

   (11) 

If   (12) 

the number of infected people will decrease exponentially, and the disease will be extinguished. 

If , on the other hand, the number of infected people will increase exponentially.   

 The ratio is called the basic reproduction number of an infectious disease and is 

usually described as “the average number of secondary cases produced by introducing one 

infected individual into a population of susceptible individuals.” 

 Figure 1 presents the infected and recovered population fractions for various values of the 

basic reproduction number .  As expected from the previous discussion on the intial stages of 

the epidemic, the disease spreads rapidly for large values of  and 40% of the population will 

be infected 80 days after community spread begins with .   As more people recover, the 

infected fraction of the population decreases with time and eventually drops to less than 0.1% at 
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about 8 months after the first infection was observed.  At that point, however, 97% of the 

population has recovered and only 3% of the population has not been infected. 

 Smaller values of the basic reproduction number lower the maximum (apex) of the infection 

curve and shift it to longer times (about 120 days from 80 when  drops from 4 to 3).  Figure 1 

also shows that an increasingly larger fraction of the population will not get infected as  

decreases (about 7% for  and about 21% for . 

 

Figure 1: SIR model predictions for the percentages of infected people  (top panel) 

and recovered people  (bottom panel) for several values of the basic 

reproduction number .   

Data for these simulations: . 
 

 The rate at which the number of infections increases or, equivalently, the number of new 

infections per day is of critical importance.  When this rate is very large, the number of new 
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infections and, thus, the number of new patients requiring hospitalization may exceed the ability 

of local health care systems to treat them.  Figure 2 shows how the basic reproduction number 

 affects the number of new infections per day.  Reducing from 4 to 2 reduces by more than 

a factor of 4 the number of new patients per day who will seek treatment.  The peak demand is 

also delayed giving the local health care systems time to adapt and expand their capacity. 

 
 Figure 2: SIR model predictions for the number of new infections per day for several values 

of the basic reproduction number .0 

Data for these simulations: . 
 

 If the initial fraction of infected people is very small compared to the size of the population 

, the number of infected people in the early stages of the epidemic will increase 

exponentially and can be computed by Equation (11).  If we know the recovery time ,  we 

can estimate the basic reproduction number  by plotting  vs. time, fitting the data 

with a straight line and estimating from the slope .  Similarly, and if we are still in 

the early stages of the disease, the doubling time for the infection can be computed by: 
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 Figure 3 shows that the assumption of exponential spreading of the disease is valid for a 

considerable length of time and until a significant fraction of the population has been infected. 

 
Figure 3: SIR model predictions showing in a semilogarithmic plot the percentage of 

infected people for several values of the basic reproduction number . 

Data for these simulations: . 
 
 
 

2 SEIR MODEL 

 For many infectious diseases, there is a latent period between the time a person is infected 

and the time this person can transmit the disease to others. During this period the pathogen is 

present in the host in low enough numbers so that the host is not yet infectious.  This 
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susceptible, infected and recovered ones.  If we assume that the mean duration of the latent or 
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by the following system of ODEs: 
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   (15) 

   (16) 

   (17) 

 The initial conditions are: 

    (18) 

where again the initial fraction of exposed people is a small fraction of the population: 

   

 By introducing the dimensionless variables 

   

equations (14) to (17) become: 
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with initial conditions: 
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   (24) 

   (21) 

 These equations are a system of first order ODEs with constant coefficients: 

   (25) 

whose solution consists of linear combinations of terms  in which  are the 

eigenvalues of A obtained by solving the equation: 
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 When , the exposed and infected subpopulations will increase exponentially, 

and the disease will spread.  Note that this is the same criterion we used to determine whether a 

disease described by the SIR model will spread or die out.   

 

 

Figure 4: SEIR model predictions for the percentages of infected people  (top 

panel) and recovered people  (bottom panel) for several values of the 

basic reproduction number .  The thinner red lines in the top panel represent 

the SEIR model predictions for the percentage of exposed people  that 
peak before the infection curves. 
Data for these simulations: . 
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model.  Again, the higher the basice reproduction number  the more rapidly the disease will 

spread.  When compared to the SIR model predictions, however, the infection curves predicted 

by the SEIR model are broader and take longer to reach their maximum (apex).  This is because 

of the latent period during which the people exposed to the disease are not infectious. For  

and a latent period of 5 days, the SEIR infection curve reaches a maximum of  29% of the 

population at about 158 days (top panel of Fig. 1). The corresponding predictions of the SIR 

model were 40% of the population infected at 80 days (Figure 1).  For , the SEIR model 

predicts very low infections for a full year after the start of community spreading. 

 Again because of the latent period during which the exposed people are not infectious, the 

SEIR model predicts much lower numbers of new infections per day when compared to the SIR 

model (Figure 5).  

 
Figure 5: SEIR model predictions for the number of new infections per day for several 

values of the basic reproduction number . 

Data for these simulations: . 
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the eigenvalues  are solutions of the quadratic equation (26).  For , 

 and , these eigenvalues are: 

    

while for  and the same values of : 

   

 The SEIR model predictions are shown in Figure 6 for the values considered here. After a 

short initial transient,  the positive eigenvalue dominates and the infection curve increases 

exponentially until it reaches the neighborhood of its maximum. 

 
Figure 6: SEIR model predictions showing in a semilogarithmic plot the percentage of 

infected people for several values of the basic reproduction number .  

Data for these simulations: . 
 

 

 

 

 

 

 

λ1  and λ2 1 γ = 14 days

1 κ = 5 days R0 = 4

λ1 = −5.366  and  λ2 = 1.566

R0 = 1.5 γ  and κ

λ1 = −4.138  and  λ2 = 0.338

R0

0 30 60 90 120 150 180 210 240 270 300 330 360
Time (days)

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Fr
ac

tio
n 

of
 In

fe
ct

ed
 P

op
ul

at
io

n,
 %

R0 = 4.00
R0 = 3.00
R0 = 2.00
R0 = 1.50

I t( ) S0 R0
1 γ = 14 days; 1 κ = 5 days; E0 = 10−7;  f = 0.99



 11 

 

 

3 HOW DO MITIGATION MEASURES FLATTEN THE CURVE? 

 While COVID-19 has a latent period, people exposed to the SARS-CoV-2 virus are 

infectious before they exhibit any symptoms.  Thus, the SIR model may be more appropriate to 

model the spread of COVID-19.  Alternatively, we can modify the SEIR model by assuming that 

interactions between susceptible and exposed people will also contribute to the rate at which the 

number of exposed people increases. 

 For the sake of simplicity, we will use the SIR model to study how the spread of an 

infectious disease (like COVID-19) can be managed by mitigation measures (like shelter-in-

place or physical distancing regulations) that modulate the basic reproduction number . 

 We will consider the following four approaches for managing the spread of the disease: 

 

1. No mitigation measures are adopted:   at all times. 

2. Mitigation measures are adopted 10 weeks after community spread begins and they lower  

to 0.95 within one week.  After 4 weeks, the mitigation measures are relaxed and 

increases to 1.5. 

3. Mitigation measures are adopted 8 weeks after community spread begins and they lower  

to 0.95 within one week.  After 4 weeks, the mitigation measures are relaxed and 

increases to 1.5. 

4. Mitigation measures are adopted 6 weeks after community spread begins and they lower  

to 0.95 within one week.  After 4 weeks, the mitigation measures are relaxed and 

increases to 1.5. 

 

 Figures 7 and 8 show how the percentages of infected people and the number of new 

infections vary with time when the basic reproduction number  remains constant varies with 

time as described above.   
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Flattening the Curve 

 
 

Figure 7: SIR model predictions for the percentages of infected people  (top panel) 

and recovered people  (bottom panel) for the following approaches to 
disease management:  
1. No mitigation measures: Basic reproduction number  is constant at 4. 
2. Mitigation measures adopted at week 10 to reduce  to 0.95. increases to 

1.5 after 4 weeks. 
3. Mitigation measures adopted at week 8 to reduce  to 0.95. increases to 

1.5 after 4 weeks. 
4. Mitigation measures adopted at week 6 to reduce  to 0.95. increases to 

1.5 after 4 weeks.  
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 Data for these simulations: . 
 

 

Flattening the Curve 
 

 
Figure 8: SIR model predictions for the number of new infections (or cases) for the 

following approaches to disease management:  
1. No mitigation measures: Basic reproduction number  is constant at 4. 
2. Mitigation measures adopted at week 10 to reduce  to 0.95. increases to 

1.5 after 4 weeks. 
3. Mitigation measures adopted at week 8 to reduce  to 0.95. increases to 

1.5 after 4 weeks. 
4. Mitigation measures adopted at week 6 to reduce  to 0.95. increases to 

1.5 after 4 weeks.  
  Data for these simulations: . 
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